

Al-Farabi Kazakh National University

Satbayev University

Theoretical and experimental investigations to define optimal parameters of the straight-flow turbine for non-dam hydro power station

D. E. Turalina, D. Zh. Bossinov Kazakhstan

A transparent view on the flow turbine from the aside perspective

A general view of the straight-flow turbine

The experimental device applied during the studies

LAMINAR AND TURBULENT FLOW SIMULATION METHODS

More mesh More time More accurate Less accurate Less mesh Less time

The part of the blade is located in the hydro turbine rotor

COMSOL Multiphysics

Mathematical model of the 2D fluid domain

Conservation of mass (continuity)

$\nabla \cdot \boldsymbol{u} = \boldsymbol{0}$

Conservation of momentum (Newton's second law)

Domain lengthL = 30 mmDomain widthW = 50 mmBlade length28.25 mmBlade width2 mm

COMSOL Multiphysics

Initial and boundary conditions

Inlet:

Periodic flow condition:

Outlet:

Wall:

RESULTS

Fig.5 Velocity magnitude (m/s)

Fig.5 Pressure (Pa)

Calculation of the lift and drag forces

Flow at a *0*-degree angle of attack Flow at a 45-degree angle of attack

$$F_{D} = \int_{S} (\rho_{f} \mu_{f} \frac{\partial u}{\partial n} n_{y} - pn_{x}) dS$$
$$F_{L} = \int_{S} (\rho_{f} \mu_{f} \frac{\partial u}{\partial n} n_{x} + pn_{y}) dS$$

Drag force

.0

Calculation of the lift and drag coefficients

$$C_D = \frac{2F_D}{\rho f u^2 d} \qquad C_L = \frac{2F_L}{\rho f u^2 d}$$

 $C_{L}(\alpha) = \oint_{c} c_{p}(s)/c) (n_{y}(s)cos(\alpha) - n_{x}(s)sin(\alpha))ds$ $C_{D}(\alpha) = -\oint_{c} (c_{p}(s)/c) (n_{y}(s)cos(\alpha) - n_{x}(s)sin(\alpha))ds$

$$c_p(s) = \frac{p(s) - p}{\frac{1}{2}\rho U^2}$$

c is the blade length

p is the fluid's pressure

 ρ is the fluid's density

U is the mean velocity

 n_x is the unit normal vector in the x direction

- $n_{\mathcal{Y}}$ is the unit normal vector in the y direction
- s is the contour of the blade
- α is the angle of attack in degrees
- C_L is the dimensionless lift coefficient
- C_D is the dimensionless drag coefficient

Dimensionless lift coefficients at various angles of flow attack

Dimensionless drag coefficients at various angles of flow attack

0

Lift and drag forces at various angles of attack in the tenth second

Lift and drag coefficients at various angles of attack in the tenth second

Determination of the thickness and number of blades

$$\delta_{\max} = (0.005 \div 0.01) D_1 \sqrt{\frac{h_{\max}}{Z}} + 0.002, m$$

Z=6: $\delta_{\max} = 0.005 * D_1 * \sqrt{\frac{h_{\max}}{Z}} + 0.002 = 0.005 * 0.05 * \sqrt{\frac{20}{6}} + 0.002 = 0.0028m$

Z=9:

$$\delta_{\text{max}} = 0.005 * D_1 * \sqrt{\frac{h_{\text{max}}}{Z}} + 0.002 = 0.005 * 0.05 * \sqrt{\frac{20}{9}} + 0.002 = 0.0025m$$
Z=12:

2:

$$\delta_{\text{max}} = 0.005 * D_1 * \sqrt{\frac{h_{\text{max}}}{Z}} + 0.002 = 0.005 * 0.05 * \sqrt{\frac{20}{12}} + 0.002 = 0.0024m$$

- Z= 6: rpm = 110
- Z= 9: rpm = 155
- Z= 12: rpm = 120

Blades along the rotor of the hydraulic turbine

VISUALIZATION OF HYDRO TURBINE PERFORMANCE

• The Case of Non-rotating Rotor Mode

- Water velocity at Inlet 0.1 m/s
- The Case of Rotating Rotor Mode
 - Water velocity at Inlet 0.8 m/s
 - Rotating domain revolves 155 times per minute along the axis Z

• The Case of Non-rotating Rotor Mode

Velocity surface (m/s)

Velocity streamlines (m/s)

• The Case of Rotating Rotor Mode

Velocity streamlines at t =0.5s

Velocity streamlines at t = 2.5s

• The Case of Rotating Rotor Mode

Velocity surface at t =0.5s (*m*/s)

Pressure contour (Pa)

Energy conversion efficiency of hydro turbine

The stream power driven to the hydro turbine: N = 9.81QH, kW.

Increasing power (efficient) via hydro turbine:

$$N_{\Im\phi} = 9,81QH\eta, kW.$$

$$v_u = \sqrt{2gH},$$

Full efficiency of hydraulic turbine:

$$\eta_{T} = \frac{N_{\Im\phi}}{N} = \frac{M\omega}{\gamma Q H},$$

$$M = \rho Q [(\upsilon_{u} r)_{1} - (\upsilon_{u} r)_{2}] = \frac{\rho Q}{2\pi} [\Gamma_{1} - \Gamma_{2}], \text{ or }$$

$$\Gamma_{1} = 2\pi (\upsilon_{u} r)_{1}; \Gamma_{2} = 2\pi (\upsilon_{u} r)_{2}; \qquad M = \frac{\gamma Q}{g} \frac{z \Gamma_{n}}{2\pi}, \quad \Gamma_{n} = \int_{1}^{2} \gamma(s) ds,$$

$$(\upsilon_{u} r)_{1} = \Gamma_{1} / 2\pi; (\upsilon_{u} r)_{2} = \Gamma_{2} / 2\pi; \qquad M = \frac{\gamma Q}{g} \frac{z \Gamma_{n}}{2\pi}, \quad \Gamma_{n} = \int_{1}^{2} \gamma(s) ds,$$

$$\Gamma_{n} \text{- circulation around the blades; } ds \text{- the skeleton element of the profile; } \qquad \omega = \frac{\upsilon_{u}}{r};$$

$$\gamma(s) \text{- specific density of vortices, placed blade profiles; } \qquad \gamma = \rho g;$$

EXPERIMENTAL RESEARCHES

The experimental device applied during the studies

Hydro turbine values regarding water discharge

N⁰	Water discharge m ³ /s	Flow velocity <i>m/s</i>	Hydro turbine rotor revolution per minute	Electricity production <i>Wt</i>
1	0.0013	0.17	28	0.5
2	0.0018	0.23	55	0.7
3	0.0022	0.28	68	1.4
4	0.0028	0.36	80	4.5
5	0.003	0.38	95	5
6	0.0042	0.535	120	6.2
7	0.005	0.64	150	8
8	0.0062	0.8	155	8.1

Tachometer

Multimeter

Flow turbine No2

A general view of the flow turbine

Constituent parts of hydro turbine

Hydro turbine values regarding water discharge

N⁰	Water discharge m ³ /s	Flow velocity <i>m/s</i>	Hydro turbine rotor revolution per minute	Electricity production Wt
1	0.0013	0.17	8	0
2	0.0018	0.23	30	0.5
3	0.0022	0.28	60	1.3
4	0.0028	0.36	75	4.2
5	0.003	0.38	89	4.7
6	0.0042	0.535	95	5
7	0.005	0.64	99	5.1
8	0.0062	0.8	100	5.2

Comparison of the characteristics of two models

Previous models of hydro turbines

ACKNOWLEDGEMENTS

The authors acknowledge the support provided by Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan, under the grant funding (AP05130503) named "Management of energy-saving modes of oil transportation through main oil pipelines using the SCADA system".

REFERENCES

- [1] D. Zh. Bossinov, M.B Koshumbayev. Innovative patent «Hydraulic unit» № 31166 16.05.2016.
- [2] D. E. Turalina, D. Zh. Bossinov. «Theoretical and experimental investigations to define optimal parameters of the straight-flow turbine for non-dam hydro power station»// VESTNIK KazNU. (Series Mathematics, Mechanics, Informatics). 2015. $N_{2}1$ (84). p. 124 131.
- [3] Jamnani Dinesh. "Modeling and Simulation of a Single Particle in Laminar Flow Regime of a Newtonian Liquid", COMSOL conference, Bangalore (2009)
- [4] R.Han, J.Cherry and R. Kallernberg. Modeling an Oscillating Water Foil for Hydrokinetic Power Generator Using COMSOL 3.5a. Excerpt from the Proceedings of the COMSOL Conference 2010 Boston.
- [5] Loytsyanskii L.G. Mechanics of liquids and gases. 6th Edition, Moscow: Science, 1987.-840 p.
- [6] Turbulent Flows by Stephen B. Pope. Cambridge University Press: Cornell University, 2000. 773 p.
- [7] Naixing Chen. AEROTHERMODYNAMICS OF TURBOMACHINERY,
- ANALYSIS AND DESIGN. Institute of Engineering Thermophysics, Chinese Academy of Sciences, China, 2010. 461 p.

Thank you for attention!

DANIYAR BOSSINOV dansho.91@mail.ru